Search results

Search for "nanomechanical mapping" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • techniques to yield multidimensional data sets and aid in isolation of the influence of electrostatic potential, for example, PeakForce infrared-KPFM (PFIR-KPFM) [66], nanomechanical mapping + KPFM [67][68], magnetic force microscopy (MFM) + KPFM [69], piezoresponse force microscopy (PFM) + KPFM [70], and G
PDF
Full Research Paper
Published 12 Sep 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • the cancer cells from the normal ones, the mechanical properties underneath the topography of different cells were evaluated. Figure 3 shows the nanomechanical mapping, typical force–distance curve and the corresponding Young’s modulus distributions of single cells of different types. For the
  • nanomechanical mapping, brighter colors mean a higher Young’s modulus while darker colors mean a lower Young’s modulus (Figure 3a–d). The Young’s modulus of cell surfaces is not homogenously distributed. Figure 3e–h show the force–distance curves (FDCs) of different cells. It demonstrates that the HPDE6-C7 forms
  • smaller than that of the three PCCs. This could be caused by the difference of the internal friction and/or vicious damping [26][27] between the normal and the cancer cells. The relative Young’s modulus distributions of different kinds of cells, according to the nanomechanical mapping (Figure 3a–d) and
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • example for nanomechanical mapping of biological samples. In general, SU8 cantilevers suffer from residual mean stress and residual stress gradients in the beam. These residual stresses can bend the cantilevers and cause issues with aligning the laser and approaching the sample. Keller et al. have shown
PDF
Album
Full Research Paper
Published 29 Nov 2019

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • drop-casting. Adhesion was measured by a Bruker Multimode 8 AFM with the Peakforce Quantitative Nanomechanics (PeakForce QNM) mode. PeakForce QNM mode is a recent advancement in AFM method providing quantitative nanomechanical mapping mode with the simultaneous measurement of the sample’s adhesion
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • experimental data and extract a shape and size of the tip interacting with a polystyrene surface. Keywords: bimodal atomic force microscopy; bimodal spectroscopy; contact mechanics; multifrequency; nanomechanical mapping; nanomechanics; Introduction Over the decades since its invention [1] the atomic force
  • other configurations (AM-PM, FM-FM, etc.), as it is the most robust, versatile and sensitive configuration for bimodal nanomechanical mapping in a wide range of imaging conditions. Conclusion An analysis framework for bimodal AFM with a power-law tip and Hertzian contact was presented. The derived
  • determination of the tip shape and size is a pivotal step towards absolute quantitative nanomechanical measurements in a variety of techniques. This work demonstrates the benefits of tip characterization in the context of bimodal nanomechanical mapping, which improves the accuracy of fast parametric techniques
PDF
Album
Full Research Paper
Published 05 Jul 2016

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

  • Benjamin Pollard and
  • Markus B. Raschke

Beilstein J. Nanotechnol. 2016, 7, 605–612, doi:10.3762/bjnano.7.53

Graphical Abstract
  • , is sensitive to the viscoelastic properties of the sample [20]. To further quantify nanoscale material properties, we also use force–distance spectroscopy (peak force quantitative nanomechanical mapping, PF-QNM) to map spatial variations in modulus, as well as the adhesion, deformation, and
PDF
Album
Full Research Paper
Published 22 Apr 2016

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

  • Blake W. Erickson,
  • Séverine Coquoz,
  • Jonathan D. Adams,
  • Daniel J. Burns and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2012, 3, 747–758, doi:10.3762/bjnano.3.84

Graphical Abstract
  • demonstrated its applicability to data acquired in tapping mode in air, tapping mode in fluid, and quantitative nanomechanical mapping (QNM) in fluid. Finally, this algorithm can also be applied to strongly stepped samples, such as atomic layers. Figure S1 in Supporting Information File 1 shows the correction
  • . Quantitative Nanomechanical Mapping (QNM) – AFM imaging in fluid Images were captured on a Multimode system with an E-scanner (Bruker Nano: Santa Barbara, CA, USA). A standard DNP-A (Bruker AFM Probes: Camarillo, CA, USA) cantilever was used with a spring constant of 0.40 N/m. Images at 5 µm were captured at
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2012
Other Beilstein-Institut Open Science Activities